
1

NMock2
A quick introduction

“If we want everything to remain as it is,

it will be necessary for everything to change.”

Giuseppe Tomasi di Lampedusa

wzuill@yahoo.com

http://zuill.us/WoodyZuill

Presented by

Jason Kerney & Woody Zuill

Software Engineers

Some Company in Carlsbad, CA
© Woody Zuill 2007

What are Mock Objects for?

� Testing Behavior

� They provide a way to say

� “I EXPECT” some specific thing to happen

� when the code I am testing

� makes a call to a method or property

� of some other object

� If the “EXPECTATION” is not met during the
test, it lets us know that the test failed.

© Woody Zuill 2007

2

A simple NUnit test using NMock2

[Test]

public void testSomethingUseful()

{

Mockery mockery = new Mockery();

IDoc docMock = mockery.NewMock< IDoc>();

Expect.Once.On (docMock)
.Method (“MethodName”)

.With (SomeParameterValue)

.Will (Return.Value (SomeReturnValue));

// do something with your actual code under test here using

// using docMock in place of the DOC

mockery.VerifyAllExpectationsHaveBeenMet();

}

© Woody Zuill 2007(DOC = “depended-on-component”)

What is the problem!?

� Things are good – we (hopefully) have a lot of
NUnit tests in place and that has been really
helpful, but…

� Sometimes a bug is discovered that we can’t
test for just by checking the state of the OUT
(Object-Under-Test)

� We need to do more than just verify STATE – we

need to test BEHAVIOR.

� Assertions don’t tell us if calls made to DOCs

(Depended-On-Components) were done correctly

– or even made at all.

© Woody Zuill 2007

3

Other problems…

� The OUT needs input from DOC

� We don’t have a way to control that “indirect

input”.

� DOC has lots of dependencies of its own

� What this means is, we need Isolation

� We want it, but can’t get it without controlling the

DOCs or replacing them with test doubles.

© Woody Zuill 2007(OUT = “object under test”

A few other considerations …

� The context in which code works determines
its behavior.

� We must control this context in order to test the

code.

� That means controlling all DOCs of the code uses

� The behaviors we need to test might be
unobservable from the outside.

� To observe this behavior, we must peer “inside” or

“behind” the OUT

© Woody Zuill 2007O

4

We need a mechanism to do this

� One approach is to use a Mock Object to replace a

depended-on-component

� Mock Objects are a type of Test Double

� A “Test Double” is any kind of testing object used

in place of a real object

� The Benefits of Doubles:

� We get Isolation

� By replacing dependencies with something we control

� Speed

� The tests will run as fast as possible

� Dependable results

� We control the inputs

© Woody Zuill 2007

The Four Test Doubles

� Meszaros identifies 4 types of Test Doubles:

� Dummy: passed around but never actually used

� Stub: provides canned answers to calls

� Fake: a working implementation that does

something, and in some cases can be inspected

after use to verify state.

� Mocks: test behavior through the use of

programmed expectations to set up and verify

the calls expected to be received

© Woody Zuill 2007From Meszaros book –

xUnit Test Patterns: Refactoring Test Code

5

Endo-Testing

� Endo-Testing: Unit Testing with Mock
Objects

� By Tim MacKinnon, Steve Freeman, Philip Craig

� Presented at the XP2000

� Published in XP eXamined by Addison-Wesley

� This is the idea of testing from the inside

� The same guys who wrote jMock

© Woody Zuill 2007

Ways to Mock

� At least three choices:

� Hand coded static mocks

� Static mocks generated with a tool

� Dynamic Mock object library like NMock, which

is what we are covering here today

© Woody Zuill 2007O

6

How Does a Dynamic Mock Object Work?

� A dynamic mock object takes on the
interface of another object

� We code expectations which specify how
we EXPECT our OUT to interact with the
mock object

� The mock object is then substituted for the
real object

� It notifies us if any of the expectations are
violated.

� Also, a mock object can act as a stub.

© Woody Zuill 2007O

When to consider “Mocking”

� When behavior cannot be verified with Assertions alone

� When we need to verify how the OUT uses some DOC

� When observing state does not prove a DOC was used

� When methods for querying state don’t exist

� When we need to control input from a DOC

� When the DOC is difficult to set up

� When the DOC has behavior that is hard to cause

� When the DOC is slow

� When the DOC does not yet exist (hasn’t been coded yet)

� For exploratory work in creating characterization tests.

� CAUTION: Just because you can doesn’t mean you should. Learn to use
mocks - it’s good to have them in your toolbox - but don’t over do it.

© Woody Zuill 2007O

7

What Is NMock2? (at NMock.org)

� A Dynamic Mock Object Library

� A port (more or less) of jMock

� Free (Open source)

� Uses a “conversational” style to define
expectations

� Uses a Fail Fast approach - allowing you to
easily pinpoint the exact point the test failed

� Error messages clearly show the reason for
the failure (in most cases…).

© Woody Zuill 2007O

Using NMock2

� Get NMock2.dll (NMock.org)

� Put the dll in your system

� Reference it from your project

� Include a using directive for NMock2 in your
NUnit test class

© Woody Zuill 2007O

8

Questions?

� Plese speak up, I can’t hear you.

wzuill@yahoo.com

© Woody Zuill 2007

