NMock?2

A quick introduction

“If we want everything to remain as it is,
it will be necessary for everything to change.”
Giuseppe Tomasi di Lampedusa

Presented by
Jason Kerney & Woody Zuill wzuill@yahoo.com
Software Engineers http://zuill.us/WoodyZuill

Some Company in Carlsbad, CA © Woody Zuill 2007

What are Mock Objects for?

Testing Behavior

They provide a way to say

o “l EXPECT” some specific thing to happen
o when the code | am testing

o makes a call to a method or property

o of some other object

If the “EXPECTATION?” is not met during the
test, it lets us know that the test failed.

© Woody Zuill 2007

A simple NUnit test using NMock?2

[Test]
public void testSomethingUseful()
{
Mockery mockery = new Mockery();
IDoc docMock = mockery.NewMock< IDoc>();

Expect.Once.On (docMock)
.Method (“MethodName”)
.With (SomeParameterValue)
.Will (Return.Value (SomeReturnValue));

/I do something with your actual code under test here using
/I using docMock in place of the DOC

mockery.VerifyAllExpectationsHaveBeenMet();

}

(DOC = “depended-on-component”) © Woody Zuill 2007

What is the problem!?

Things are good — we (hopefully) have a lot of
NUnit tests in place and that has been really
helpful, but...

Sometimes a bug is discovered that we can'’t

test for just by checking the state of the OUT

(Object-Under-Test)

o We need to do more than just verify STATE —we
need to test BEHAVIOR.

o Assertions don’t tell us if calls made to DOCs
(Depended-On-Components) were done correctly
— or even made at all.

© Woody Zuill 2007

Other problems...

The OUT needs input from DOC

o We don’t have a way to control that “indirect
input”.

DOC has lots of dependencies of its own

What this means is, we need Isolation

o We want it, but can’t get it without controlling the
DOCs or replacing them with test doubles.

(OUT = “object under test” © Woody Zuill 2007

A few other considerations ...

The context in which code works determines
its behavior.

o We must control this context in order to test the
code.

o That means controlling all DOCs of the code uses
The behaviors we need to test might be
unobservable from the outside.

o To observe this behavior, we must peer “inside” or
“behind” the OUT

© Woody Zuill 2007

We need a mechanism to do this

One approach is to use a Mock Object to replace a
depended-on-component

Mock Objects are a type of Test Double
A “Test Double” is any kind of testing object used
in place of a real object
The Benefits of Doubles:
o We get Isolation
By replacing dependencies with something we control
o Speed
The tests will run as fast as possible
o Dependable results
We control the inputs

© Woody Zuill 2007

The Four Test Doubles

Meszaros identifies 4 types of Test Doubles:
o Dummy: passed around but never actually used
a Stub: provides canned answers to calls

o Fake: a working implementation that does
something, and in some cases can be inspected
after use to verify state.

o Mocks: test behavior through the use of
programmed expectations to set up and verify
the calls expected to be received

From Meszaros book - © Woody Zuill 2007
xUnit Test Patterns: Refactoring Test Code

Endo-Testing

Endo-Testing: Unit Testing with Mock
Objects

o By Tim MacKinnon, Steve Freeman, Philip Craig
a Presented at the XP2000

a Published in XP eXamined by Addison-Wesley
a This is the idea of testing from the inside

a The same guys who wrote jMock

© Woody Zuill 2007

Ways to Mock

At least three choices:
o Hand coded static mocks
o Static mocks generated with a tool

a Dynamic Mock object library like NMock, which
is what we are covering here today

© Woody Zuill 2007

How Does a Dynamic Mock Object Work?

A dynamic mock object takes on the
interface of another object

We code expectations which specify how
we EXPECT our OUT to interact with the
mock object

The mock object is then substituted for the
real object

It notifies us if any of the expectations are
violated.

Also, a mock object can act as a stub.

© Woody Zuill 2007

When to consider "Mocking”

When behavior cannot be verified with Assertions alone
When we need to verify how the OUT uses some DOC
When observing state does not prove a DOC was used
When methods for querying state don’t exist

When we need to control input from a DOC

When the DOC is difficult to set up

When the DOC has behavior that is hard to cause

When the DOC is slow

When the DOC does not yet exist (hasn’t been coded yet)
For exploratory work in creating characterization tests.

CAUTION: Just because you can doesn’t mean you should. Learn to use
mocks - it’s good to have them in your toolbox - but don’t over do it.

© Woody Zuill 2007

What Is NMock2? (at NMock.org)

A Dynamic Mock Obiject Library
a A port (more or less) of jMock
Free (Open source)

Uses a “conversational” style to define
expectations

Uses a Fail Fast approach - allowing you to
easily pinpoint the exact point the test failed

Error messages clearly show the reason for
the failure (in most cases...).

© Woody Zuill 2007

Using NMock2

Get NMock2.dll (NMock.org)
Put the dlIl in your system
Reference it from your project

Include a using directive for NMock2 in your
NUnit test class

© Woody Zuill 2007

| Questions?

= Plese speak up, | can’t hear you.

wzuill@yahoo.com

© Woody Zuill 2007

